目录前言 1、安装插件open in browser的步骤 2、总结 总结前言 一般我们安装VSCode需要安装很多插件,在VSCode中默认编写的HTML页面是不能运行的。 新手在使用VSCode会
顺晟科技
2022-09-30 11:31:47
175
实战场景:Pandas如何将表格的前几行生成html
实战:
import numpy as np import pandas as pd np.random.seed(66) s1 = pd.Series(np.random.rand(20)) s2 = pd.Series(np.random.randn(20)) df = pd.concat([s1, s2], axis=1) df.columns = ['col1', 'col2'] # df.head 取前5行 print(df.head(5).to_html())
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>col1</th>
<th>col2</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>0.154288</td>
<td>-0.180981</td>
</tr>
<tr>
<th>1</th>
<td>0.133700</td>
<td>-0.056043</td>
</tr>
<tr>
<th>2</th>
<td>0.362685</td>
<td>-0.185062</td>
</tr>
<tr>
<th>3</th>
<td>0.679109</td>
<td>-0.610935</td>
</tr>
<tr>
<th>4</th>
<td>0.194450</td>
<td>-0.048804</td>
</tr>
</tbody>
</table>
实战场景:Pandas如何计算一列数字的中位数
实战:
import numpy as np import pandas as pd np.random.seed(66) s1 = pd.Series(np.random.rand(20)) s2 = pd.Series(np.random.randn(20)) df = pd.concat([s1, s2], axis=1) df.columns = ['col1', 'col2'] #median直接算中位数 print(df["col2"].median()) #用50%分位数 print(df["col2"].quantile())
-0.2076894596485453
-0.2076894596485453
实战场景:Pandas如何获取某个数据列最大和最小的5个数
实战:
iimport numpy as np import pandas as pd np.random.seed(66) s1 = pd.Series(np.random.rand(20)) s2 = pd.Series(np.random.randn(20)) #合并两个Series到DF df = pd.concat([s1, s2], axis=1) df.columns = ['col1', 'col2'] # 取最大的五个数 print(df["col2"].nlargest(5)) print() # 取最小的五个数 print(df["col2"].nsmallest(5))
12 1.607623
17 1.404255
19 0.675887
13 0.345030
Name: col2, dtype: float6416 -1.220877
18 -1.215324
11 -1.003714
8 -0.936607
5 -0.632613
Name: col2, dtype: float64
实战场景:Pandas如何查看客户是否流失字段的数据映射
""" Churn:客户是否流失 Yes -> 1 No -> 0 实现字符串到数字的映射 """ import pandas as pd df = pd.read_csv("Telco-Customer-Churn.csv") #返回取值,及其取值多少次 print(df["Churn"].value_counts()) df["Churn"] = df["Churn"].map({"Yes": 1, "No": 0}) print() print(df["Churn"].value_counts()) print(df.describe(include=["category"]))
原文地址:https://blog.csdn.net/qq_39816613/article/details/126226763No 5174
Yes 1869
Name: Churn, dtype: int640 5174
1 1869
Name: Churn, dtype: int6
09
2022-11
16
2022-10
30
2022-09
15
2022-09
15
2022-09
15
2022-09